welcomecenterbot/nlp/normalize.py

86 lines
2.3 KiB
Python
Raw Normal View History

2024-09-26 20:38:05 +00:00
import torch
2024-09-27 07:15:18 +00:00
from transformers import ByT5Tokenizer, T5ForConditionalGeneration
2024-09-26 20:38:05 +00:00
2024-09-27 07:10:40 +00:00
# Use ByT5 for the ByT5 model
tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")
2024-09-27 07:15:18 +00:00
model = T5ForConditionalGeneration.from_pretrained("google/byt5-small")
2024-09-27 06:23:55 +00:00
2024-09-26 18:36:14 +00:00
def is_russian_wording(text):
"""
2024-09-27 07:57:20 +00:00
Check if the text contains more than one Russian character by checking
2024-09-26 18:36:14 +00:00
each character against the Unicode range for Cyrillic.
"""
2024-09-27 06:32:25 +00:00
counter = 0
2024-09-26 18:36:14 +00:00
for char in text:
2024-09-27 06:23:55 +00:00
if "\u0400" <= char <= "\u04ff": # Unicode range for Cyrillic characters
2024-09-27 06:32:25 +00:00
counter += 1
2024-09-27 07:57:20 +00:00
if counter > 1:
return True
2024-09-26 18:36:14 +00:00
return False
2024-09-27 06:23:55 +00:00
2024-09-26 20:38:05 +00:00
def segment_text(text):
"""
Use a neural network model to segment text into words.
"""
2024-09-27 07:57:20 +00:00
# Encode the input text for the model as UTF-8 bytes
inputs = tokenizer.encode("segment: " + text, return_tensors="pt")
2024-09-27 06:23:55 +00:00
2024-09-26 20:38:05 +00:00
# Generate predictions
with torch.no_grad():
2024-09-27 07:57:20 +00:00
outputs = model.generate(inputs)
2024-09-27 06:23:55 +00:00
2024-09-26 20:38:05 +00:00
# Decode the generated tokens back to text
segmented_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
2024-09-27 06:23:55 +00:00
2024-09-26 20:38:05 +00:00
return segmented_text
2024-09-27 06:23:55 +00:00
2024-09-26 18:36:14 +00:00
def normalize(text):
"""
Normalize English text to resemble Russian characters.
"""
2024-09-26 20:38:05 +00:00
# Segment the text first
2024-09-27 08:18:18 +00:00
t = segment_text(text.replace(" ", " ").replace(" ", " ").replace(" ", " "))
t = t.lower()
2024-09-27 06:23:55 +00:00
2024-09-27 06:32:25 +00:00
if is_russian_wording(t):
2024-09-26 18:36:14 +00:00
# Normalize the text by replacing characters
2024-09-27 08:18:18 +00:00
normalized_text = (t
2024-09-27 06:32:25 +00:00
.replace("e", "е")
2024-09-27 06:23:55 +00:00
.replace("o", "о")
.replace("x", "х")
.replace("a", "а")
2024-09-27 07:57:20 +00:00
.replace("r", "р")
2024-09-27 06:23:55 +00:00
.replace("m", "м")
.replace("u", "и")
2024-09-27 07:57:20 +00:00
.replace("n", "н")
.replace("p", "п")
2024-09-27 06:23:55 +00:00
.replace("t", "т")
.replace("y", "у")
2024-09-27 07:57:20 +00:00
.replace("h", "х")
.replace("i", "и")
2024-09-27 06:23:55 +00:00
.replace("c", "с")
.replace("k", "к")
.replace("b", "в")
.replace("3", "з")
.replace("4", "ч")
.replace("0", "о")
.replace("d", "д")
.replace("z", "з")
)
2024-09-26 20:38:05 +00:00
return normalized_text
2024-09-27 06:23:55 +00:00
2024-09-27 06:32:25 +00:00
return t
2024-09-26 20:38:05 +00:00
2024-09-27 06:23:55 +00:00
2024-09-26 20:38:05 +00:00
# Example usage
if __name__ == "__main__":
2024-09-27 07:15:18 +00:00
input_text = "привет шп ана т у п а я"
2024-09-27 06:23:55 +00:00
2024-09-26 20:38:05 +00:00
normalized_output = normalize(input_text)
print(normalized_output)