26 lines
723 B
Python
26 lines
723 B
Python
|
import torch
|
||
|
from transformers import ByT5Tokenizer, T5ForConditionalGeneration
|
||
|
|
||
|
# Use ByT5 for the ByT5 model
|
||
|
tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")
|
||
|
model = T5ForConditionalGeneration.from_pretrained("google/byt5-small")
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def segment_text(text):
|
||
|
"""
|
||
|
Use a neural network model to segment text into words.
|
||
|
"""
|
||
|
# Encode the input text for the model as UTF-8 bytes
|
||
|
inputs = tokenizer.encode("segment: " + text, return_tensors="pt")
|
||
|
|
||
|
# Generate predictions
|
||
|
with torch.no_grad():
|
||
|
outputs = model.generate(inputs)
|
||
|
|
||
|
# Decode the generated tokens back to text
|
||
|
segmented_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||
|
|
||
|
return segmented_text
|