import torch from transformers import T5Tokenizer, T5ForConditionalGeneration # Initialize the T5 model and tokenizer tokenizer = T5Tokenizer.from_pretrained("google/byt5-small") model = T5ForConditionalGeneration.from_pretrained("google/byt5-small") def is_russian_wording(text): """ Check if the text contains more than one Russian characters by checking each character against the Unicode range for Cyrillic. """ counter = 0 for char in text: if "\u0400" <= char <= "\u04ff": # Unicode range for Cyrillic characters counter += 1 if counter > 1: return True return False def segment_text(text): """ Use a neural network model to segment text into words. """ # Encode the input text for the model inputs = tokenizer.encode("segment: " + text, return_tensors="pt") # Generate predictions with torch.no_grad(): outputs = model.generate(inputs) # Decode the generated tokens back to text segmented_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return segmented_text def normalize(text): """ Normalize English text to resemble Russian characters. """ # Segment the text first t = segment_text( text.replace(" ", " ").replace(" ", " ").replace(" ", " ") ) if is_russian_wording(t): # Normalize the text by replacing characters normalized_text = ( t.lower() .replace("e", "е") .replace("o", "о") .replace("x", "х") .replace("a", "а") .replace("r", "г") .replace("m", "м") .replace("u", "и") .replace("n", "п") .replace("p", "р") .replace("t", "т") .replace("y", "у") .replace("h", "н") .replace("i", "й") .replace("c", "с") .replace("k", "к") .replace("b", "в") .replace("3", "з") .replace("4", "ч") .replace("0", "о") .replace("d", "д") .replace("z", "з") ) return normalized_text return t # Example usage if __name__ == "__main__": input_text = "Hello, this is a test input." normalized_output = normalize(input_text) print(normalized_output)