import logging import torch from transformers import T5Tokenizer, T5ForConditionalGeneration # Initialize the T5 model and tokenizer tokenizer = T5Tokenizer.from_pretrained("google/byt5-small") model = T5ForConditionalGeneration.from_pretrained("google/byt5-small") def is_russian_wording(text): """ Check if the text contains any Russian characters by checking each character against the Unicode range for Cyrillic. """ for char in text: if '\u0400' <= char <= '\u04FF': # Unicode range for Cyrillic characters return True return False def segment_text(text): """ Use a neural network model to segment text into words. """ # Encode the input text for the model inputs = tokenizer.encode("segment: " + text, return_tensors="pt") # Generate predictions with torch.no_grad(): outputs = model.generate(inputs) # Decode the generated tokens back to text segmented_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return segmented_text def normalize(text): """ Normalize English text to resemble Russian characters. """ # Segment the text first segmented_text = segment_text(text.replace(' ', ' ').replace(' ', ' ').replace(' ', ' ')) # Normalize after segmentation segmented_text = segmented_text.lower() if is_russian_wording(segmented_text): # Normalize the text by replacing characters normalized_text = (segmented_text .replace('e', 'е') .replace('o', 'о') .replace('x', 'х') .replace('a', 'а') .replace('r', 'г') .replace('m', 'м') .replace('u', 'и') .replace('n', 'п') .replace('p', 'р') .replace('t', 'т') .replace('y', 'у') .replace('h', 'н') .replace('i', 'й') .replace('c', 'с') .replace('k', 'к') .replace('b', 'в') .replace('3', 'з') .replace('4', 'ч') .replace('0', 'о') .replace('d', 'д') .replace('z', 'з')) return normalized_text return segmented_text # Example usage if __name__ == "__main__": input_text = "Hello, this is a test input." normalized_output = normalize(input_text) print(normalized_output)