import torch from transformers import ByT5Tokenizer, T5ForConditionalGeneration # Use ByT5 for the ByT5 model tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small") model = T5ForConditionalGeneration.from_pretrained("google/byt5-small") def segment_text(text): """ Use a neural network model to segment text into words. """ # Encode the input text for the model as UTF-8 bytes inputs = tokenizer.encode("segment: " + text, return_tensors="pt") # Generate predictions with torch.no_grad(): outputs = model.generate(inputs) # Decode the generated tokens back to text segmented_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return segmented_text