feat(search.py): separate indexing of Shout Title, shout Body and Authors
All checks were successful
Deploy on push / deploy (push) Successful in 39s
All checks were successful
Deploy on push / deploy (push) Successful in 39s
This commit is contained in:
parent
e382cc1ea5
commit
4d965fb27b
28
orm/shout.py
28
orm/shout.py
|
@ -71,6 +71,34 @@ class ShoutAuthor(Base):
|
|||
class Shout(Base):
|
||||
"""
|
||||
Публикация в системе.
|
||||
|
||||
Attributes:
|
||||
body (str)
|
||||
slug (str)
|
||||
cover (str) : "Cover image url"
|
||||
cover_caption (str) : "Cover image alt caption"
|
||||
lead (str)
|
||||
title (str)
|
||||
subtitle (str)
|
||||
layout (str)
|
||||
media (dict)
|
||||
authors (list[Author])
|
||||
topics (list[Topic])
|
||||
reactions (list[Reaction])
|
||||
lang (str)
|
||||
version_of (int)
|
||||
oid (str)
|
||||
seo (str) : JSON
|
||||
draft (int)
|
||||
created_at (int)
|
||||
updated_at (int)
|
||||
published_at (int)
|
||||
featured_at (int)
|
||||
deleted_at (int)
|
||||
created_by (int)
|
||||
updated_by (int)
|
||||
deleted_by (int)
|
||||
community (int)
|
||||
"""
|
||||
|
||||
__tablename__ = "shout"
|
||||
|
|
|
@ -19,7 +19,7 @@ from sqlalchemy import (
|
|||
inspect,
|
||||
text,
|
||||
)
|
||||
from sqlalchemy.orm import Session, configure_mappers, declarative_base
|
||||
from sqlalchemy.orm import Session, configure_mappers, declarative_base, joinedload
|
||||
from sqlalchemy.sql.schema import Table
|
||||
|
||||
from settings import DB_URL
|
||||
|
@ -260,8 +260,11 @@ def get_json_builder():
|
|||
# Используем их в коде
|
||||
json_builder, json_array_builder, json_cast = get_json_builder()
|
||||
|
||||
# Fetch all shouts, with authors preloaded
|
||||
# This function is used for search indexing
|
||||
|
||||
async def fetch_all_shouts(session=None):
|
||||
"""Fetch all published shouts for search indexing"""
|
||||
"""Fetch all published shouts for search indexing with authors preloaded"""
|
||||
from orm.shout import Shout
|
||||
|
||||
close_session = False
|
||||
|
@ -270,8 +273,10 @@ async def fetch_all_shouts(session=None):
|
|||
close_session = True
|
||||
|
||||
try:
|
||||
# Fetch only published and non-deleted shouts
|
||||
query = session.query(Shout).filter(
|
||||
# Fetch only published and non-deleted shouts with authors preloaded
|
||||
query = session.query(Shout).options(
|
||||
joinedload(Shout.authors)
|
||||
).filter(
|
||||
Shout.published_at.is_not(None),
|
||||
Shout.deleted_at.is_(None)
|
||||
)
|
||||
|
|
|
@ -216,8 +216,9 @@ class SearchService:
|
|||
"""Check if service is available"""
|
||||
return self.available
|
||||
|
||||
|
||||
async def verify_docs(self, doc_ids):
|
||||
"""Verify which documents exist in the search index"""
|
||||
"""Verify which documents exist in the search index across all content types"""
|
||||
if not self.available:
|
||||
return {"status": "disabled"}
|
||||
|
||||
|
@ -231,14 +232,36 @@ class SearchService:
|
|||
response.raise_for_status()
|
||||
result = response.json()
|
||||
|
||||
# Log summary of verification results
|
||||
missing_count = len(result.get("missing", []))
|
||||
logger.info(f"Document verification complete: {missing_count} missing out of {len(doc_ids)} total")
|
||||
# Process the more detailed response format
|
||||
bodies_missing = set(result.get("bodies", {}).get("missing", []))
|
||||
titles_missing = set(result.get("titles", {}).get("missing", []))
|
||||
|
||||
return result
|
||||
# Combine missing IDs from both bodies and titles
|
||||
# A document is considered missing if it's missing from either index
|
||||
all_missing = list(bodies_missing.union(titles_missing))
|
||||
|
||||
# Log summary of verification results
|
||||
bodies_missing_count = len(bodies_missing)
|
||||
titles_missing_count = len(titles_missing)
|
||||
total_missing_count = len(all_missing)
|
||||
|
||||
logger.info(f"Document verification complete: {bodies_missing_count} bodies missing, {titles_missing_count} titles missing")
|
||||
logger.info(f"Total unique missing documents: {total_missing_count} out of {len(doc_ids)} total")
|
||||
|
||||
# Return in a backwards-compatible format plus the detailed breakdown
|
||||
return {
|
||||
"missing": all_missing,
|
||||
"details": {
|
||||
"bodies_missing": list(bodies_missing),
|
||||
"titles_missing": list(titles_missing),
|
||||
"bodies_missing_count": bodies_missing_count,
|
||||
"titles_missing_count": titles_missing_count
|
||||
}
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"Document verification error: {e}")
|
||||
return {"status": "error", "message": str(e)}
|
||||
|
||||
|
||||
def index(self, shout):
|
||||
"""Index a single document"""
|
||||
|
@ -249,68 +272,147 @@ class SearchService:
|
|||
asyncio.create_task(self.perform_index(shout))
|
||||
|
||||
async def perform_index(self, shout):
|
||||
"""Actually perform the indexing operation"""
|
||||
"""Index a single document across multiple endpoints"""
|
||||
if not self.available:
|
||||
return
|
||||
|
||||
try:
|
||||
# Combine all text fields
|
||||
text = " ".join(filter(None, [
|
||||
shout.title or "",
|
||||
shout.subtitle or "",
|
||||
shout.lead or "",
|
||||
shout.body or "",
|
||||
shout.media or ""
|
||||
]))
|
||||
logger.info(f"Indexing document {shout.id} to individual endpoints")
|
||||
indexing_tasks = []
|
||||
|
||||
if not text.strip():
|
||||
logger.warning(f"No text content to index for shout {shout.id}")
|
||||
return
|
||||
# 1. Index title if available
|
||||
if hasattr(shout, 'title') and shout.title and isinstance(shout.title, str):
|
||||
title_doc = {
|
||||
"id": str(shout.id),
|
||||
"title": shout.title.strip()
|
||||
}
|
||||
indexing_tasks.append(
|
||||
self.index_client.post("/index-title", json=title_doc)
|
||||
)
|
||||
|
||||
# 2. Index body content (subtitle, lead, body)
|
||||
body_text_parts = []
|
||||
for field_name in ['subtitle', 'lead', 'body']:
|
||||
field_value = getattr(shout, field_name, None)
|
||||
if field_value and isinstance(field_value, str) and field_value.strip():
|
||||
body_text_parts.append(field_value.strip())
|
||||
|
||||
# Process media content if available
|
||||
media = getattr(shout, 'media', None)
|
||||
if media:
|
||||
if isinstance(media, str):
|
||||
try:
|
||||
media_json = json.loads(media)
|
||||
if isinstance(media_json, dict):
|
||||
if 'title' in media_json:
|
||||
body_text_parts.append(media_json['title'])
|
||||
if 'body' in media_json:
|
||||
body_text_parts.append(media_json['body'])
|
||||
except json.JSONDecodeError:
|
||||
body_text_parts.append(media)
|
||||
elif isinstance(media, dict):
|
||||
if 'title' in media:
|
||||
body_text_parts.append(media['title'])
|
||||
if 'body' in media:
|
||||
body_text_parts.append(media['body'])
|
||||
|
||||
if body_text_parts:
|
||||
body_text = " ".join(body_text_parts)
|
||||
# Truncate if too long
|
||||
MAX_TEXT_LENGTH = 4000
|
||||
if len(body_text) > MAX_TEXT_LENGTH:
|
||||
body_text = body_text[:MAX_TEXT_LENGTH]
|
||||
|
||||
logger.info(f"Indexing document: ID={shout.id}, Text length={len(text)}")
|
||||
body_doc = {
|
||||
"id": str(shout.id),
|
||||
"body": body_text
|
||||
}
|
||||
indexing_tasks.append(
|
||||
self.index_client.post("/index-body", json=body_doc)
|
||||
)
|
||||
|
||||
# Send to txtai service
|
||||
response = await self.client.post(
|
||||
"/index",
|
||||
json={"id": str(shout.id), "text": text}
|
||||
)
|
||||
response.raise_for_status()
|
||||
result = response.json()
|
||||
logger.info(f"Post {shout.id} successfully indexed: {result}")
|
||||
# 3. Index authors
|
||||
authors = getattr(shout, 'authors', [])
|
||||
for author in authors:
|
||||
author_id = str(getattr(author, 'id', 0))
|
||||
if not author_id or author_id == '0':
|
||||
continue
|
||||
|
||||
name = getattr(author, 'name', '')
|
||||
|
||||
# Combine bio and about fields
|
||||
bio_parts = []
|
||||
bio = getattr(author, 'bio', '')
|
||||
if bio and isinstance(bio, str):
|
||||
bio_parts.append(bio.strip())
|
||||
|
||||
about = getattr(author, 'about', '')
|
||||
if about and isinstance(about, str):
|
||||
bio_parts.append(about.strip())
|
||||
|
||||
combined_bio = " ".join(bio_parts)
|
||||
|
||||
if name:
|
||||
author_doc = {
|
||||
"id": author_id,
|
||||
"name": name,
|
||||
"bio": combined_bio
|
||||
}
|
||||
indexing_tasks.append(
|
||||
self.index_client.post("/index-author", json=author_doc)
|
||||
)
|
||||
|
||||
# Run all indexing tasks in parallel
|
||||
if indexing_tasks:
|
||||
responses = await asyncio.gather(*indexing_tasks, return_exceptions=True)
|
||||
|
||||
# Check for errors in responses
|
||||
for i, response in enumerate(responses):
|
||||
if isinstance(response, Exception):
|
||||
logger.error(f"Error in indexing task {i}: {response}")
|
||||
elif hasattr(response, 'status_code') and response.status_code >= 400:
|
||||
logger.error(f"Error response in indexing task {i}: {response.status_code}, {await response.text()}")
|
||||
|
||||
logger.info(f"Document {shout.id} indexed across {len(indexing_tasks)} endpoints")
|
||||
else:
|
||||
logger.warning(f"No content to index for shout {shout.id}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Indexing error for shout {shout.id}: {e}")
|
||||
|
||||
async def bulk_index(self, shouts):
|
||||
"""Index multiple documents at once with adaptive batch sizing"""
|
||||
"""Index multiple documents across three separate endpoints"""
|
||||
if not self.available or not shouts:
|
||||
logger.warning(f"Bulk indexing skipped: available={self.available}, shouts_count={len(shouts) if shouts else 0}")
|
||||
return
|
||||
|
||||
start_time = time.time()
|
||||
logger.info(f"Starting bulk indexing of {len(shouts)} documents")
|
||||
logger.info(f"Starting multi-endpoint bulk indexing of {len(shouts)} documents")
|
||||
|
||||
MAX_TEXT_LENGTH = 4000 # Maximum text length to send in a single request
|
||||
max_batch_size = MAX_BATCH_SIZE
|
||||
total_indexed = 0
|
||||
# Prepare documents for different endpoints
|
||||
title_docs = []
|
||||
body_docs = []
|
||||
author_docs = {} # Use dict to prevent duplicate authors
|
||||
|
||||
total_skipped = 0
|
||||
total_truncated = 0
|
||||
total_retries = 0
|
||||
|
||||
# Group documents by size to process smaller documents in larger batches
|
||||
small_docs = []
|
||||
medium_docs = []
|
||||
large_docs = []
|
||||
|
||||
# First pass: prepare all documents and categorize by size
|
||||
for shout in shouts:
|
||||
try:
|
||||
text_fields = []
|
||||
for field_name in ['title', 'subtitle', 'lead', 'body']:
|
||||
# 1. Process title documents
|
||||
if hasattr(shout, 'title') and shout.title and isinstance(shout.title, str):
|
||||
title_docs.append({
|
||||
"id": str(shout.id),
|
||||
"title": shout.title.strip()
|
||||
})
|
||||
|
||||
# 2. Process body documents (subtitle, lead, body)
|
||||
body_text_parts = []
|
||||
for field_name in ['subtitle', 'lead', 'body']:
|
||||
field_value = getattr(shout, field_name, None)
|
||||
if field_value and isinstance(field_value, str) and field_value.strip():
|
||||
text_fields.append(field_value.strip())
|
||||
body_text_parts.append(field_value.strip())
|
||||
|
||||
# Media field processing remains the same
|
||||
# Process media content if available
|
||||
media = getattr(shout, 'media', None)
|
||||
if media:
|
||||
if isinstance(media, str):
|
||||
|
@ -318,186 +420,180 @@ class SearchService:
|
|||
media_json = json.loads(media)
|
||||
if isinstance(media_json, dict):
|
||||
if 'title' in media_json:
|
||||
text_fields.append(media_json['title'])
|
||||
body_text_parts.append(media_json['title'])
|
||||
if 'body' in media_json:
|
||||
text_fields.append(media_json['body'])
|
||||
body_text_parts.append(media_json['body'])
|
||||
except json.JSONDecodeError:
|
||||
text_fields.append(media)
|
||||
body_text_parts.append(media)
|
||||
elif isinstance(media, dict):
|
||||
if 'title' in media:
|
||||
text_fields.append(media['title'])
|
||||
body_text_parts.append(media['title'])
|
||||
if 'body' in media:
|
||||
text_fields.append(media['body'])
|
||||
body_text_parts.append(media['body'])
|
||||
|
||||
text = " ".join(text_fields)
|
||||
|
||||
if not text.strip():
|
||||
total_skipped += 1
|
||||
continue
|
||||
|
||||
# Truncate text if it exceeds the maximum length
|
||||
original_length = len(text)
|
||||
if original_length > MAX_TEXT_LENGTH:
|
||||
text = text[:MAX_TEXT_LENGTH]
|
||||
total_truncated += 1
|
||||
|
||||
document = {
|
||||
"id": str(shout.id),
|
||||
"text": text
|
||||
}
|
||||
|
||||
# Categorize by size
|
||||
text_len = len(text)
|
||||
if text_len > 5000:
|
||||
large_docs.append(document)
|
||||
elif text_len > 2000:
|
||||
medium_docs.append(document)
|
||||
else:
|
||||
small_docs.append(document)
|
||||
|
||||
total_indexed += 1
|
||||
# Only add body document if we have body text
|
||||
if body_text_parts:
|
||||
body_text = " ".join(body_text_parts)
|
||||
# Truncate if too long
|
||||
MAX_TEXT_LENGTH = 4000
|
||||
if len(body_text) > MAX_TEXT_LENGTH:
|
||||
body_text = body_text[:MAX_TEXT_LENGTH]
|
||||
|
||||
body_docs.append({
|
||||
"id": str(shout.id),
|
||||
"body": body_text
|
||||
})
|
||||
|
||||
# 3. Process authors if available
|
||||
authors = getattr(shout, 'authors', [])
|
||||
for author in authors:
|
||||
author_id = str(getattr(author, 'id', 0))
|
||||
if not author_id or author_id == '0':
|
||||
continue
|
||||
|
||||
# Skip if we've already processed this author
|
||||
if author_id in author_docs:
|
||||
continue
|
||||
|
||||
name = getattr(author, 'name', '')
|
||||
|
||||
# Combine bio and about fields
|
||||
bio_parts = []
|
||||
bio = getattr(author, 'bio', '')
|
||||
if bio and isinstance(bio, str):
|
||||
bio_parts.append(bio.strip())
|
||||
|
||||
about = getattr(author, 'about', '')
|
||||
if about and isinstance(about, str):
|
||||
bio_parts.append(about.strip())
|
||||
|
||||
combined_bio = " ".join(bio_parts)
|
||||
|
||||
# Only add if we have author data
|
||||
if name:
|
||||
author_docs[author_id] = {
|
||||
"id": author_id,
|
||||
"name": name,
|
||||
"bio": combined_bio
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing shout {getattr(shout, 'id', 'unknown')} for indexing: {e}")
|
||||
total_skipped += 1
|
||||
|
||||
# Process each category with appropriate batch sizes
|
||||
logger.info(f"Documents categorized: {len(small_docs)} small, {len(medium_docs)} medium, {len(large_docs)} large")
|
||||
# Convert author dict to list
|
||||
author_docs_list = list(author_docs.values())
|
||||
|
||||
# Process small documents (larger batches)
|
||||
if small_docs:
|
||||
batch_size = min(max_batch_size, 15)
|
||||
await self._process_document_batches(small_docs, batch_size, "small")
|
||||
|
||||
# Process medium documents (medium batches)
|
||||
if medium_docs:
|
||||
batch_size = min(max_batch_size, 10)
|
||||
await self._process_document_batches(medium_docs, batch_size, "medium")
|
||||
|
||||
# Process large documents (small batches)
|
||||
if large_docs:
|
||||
batch_size = min(max_batch_size, 3)
|
||||
await self._process_document_batches(large_docs, batch_size, "large")
|
||||
# Process each endpoint in parallel
|
||||
indexing_tasks = [
|
||||
self._index_endpoint(title_docs, "/bulk-index-titles", "title"),
|
||||
self._index_endpoint(body_docs, "/bulk-index-bodies", "body"),
|
||||
self._index_endpoint(author_docs_list, "/bulk-index-authors", "author")
|
||||
]
|
||||
|
||||
await asyncio.gather(*indexing_tasks)
|
||||
|
||||
elapsed = time.time() - start_time
|
||||
logger.info(f"Bulk indexing completed in {elapsed:.2f}s: {total_indexed} indexed, {total_skipped} skipped, {total_truncated} truncated, {total_retries} retries")
|
||||
|
||||
async def _process_document_batches(self, documents, batch_size, size_category):
|
||||
"""Process document batches with retry logic"""
|
||||
# Check for possible database corruption before starting
|
||||
db_error_count = 0
|
||||
|
||||
for i in range(0, len(documents), batch_size):
|
||||
batch = documents[i:i+batch_size]
|
||||
batch_id = f"{size_category}-{i//batch_size + 1}"
|
||||
logger.info(f"Processing {size_category} batch {batch_id} of {len(batch)} documents")
|
||||
|
||||
retry_count = 0
|
||||
max_retries = 3
|
||||
success = False
|
||||
|
||||
# Process with retries
|
||||
while not success and retry_count < max_retries:
|
||||
try:
|
||||
logger.info(f"Sending batch {batch_id} of {len(batch)} documents to search service (attempt {retry_count+1})")
|
||||
response = await self.index_client.post(
|
||||
"/bulk-index",
|
||||
json=batch,
|
||||
timeout=120.0 # Explicit longer timeout for large batches
|
||||
)
|
||||
|
||||
# Handle 422 validation errors - these won't be fixed by retrying
|
||||
if response.status_code == 422:
|
||||
error_detail = response.json()
|
||||
truncated_error = self._truncate_error_detail(error_detail)
|
||||
logger.error(f"Validation error from search service for batch {batch_id}: {truncated_error}")
|
||||
break
|
||||
|
||||
# Handle 500 server errors - these might be fixed by retrying with smaller batches
|
||||
elif response.status_code == 500:
|
||||
db_error_count += 1
|
||||
|
||||
# If we've seen multiple 500s, log a critical error
|
||||
if db_error_count >= 3:
|
||||
logger.critical(f"Multiple server errors detected (500). The search service may need manual intervention. Stopping batch {batch_id} processing.")
|
||||
break
|
||||
|
||||
# Try again with exponential backoff
|
||||
if retry_count < max_retries - 1:
|
||||
retry_count += 1
|
||||
wait_time = (2 ** retry_count) + (random.random() * 0.5) # Exponential backoff with jitter
|
||||
await asyncio.sleep(wait_time)
|
||||
continue
|
||||
|
||||
# Final retry, split the batch
|
||||
elif len(batch) > 1:
|
||||
mid = len(batch) // 2
|
||||
await self._process_single_batch(batch[:mid], f"{batch_id}-A")
|
||||
await self._process_single_batch(batch[mid:], f"{batch_id}-B")
|
||||
break
|
||||
else:
|
||||
# Can't split a single document
|
||||
break
|
||||
|
||||
# Normal success case
|
||||
response.raise_for_status()
|
||||
success = True
|
||||
db_error_count = 0 # Reset error counter on success
|
||||
|
||||
except Exception as e:
|
||||
error_str = str(e).lower()
|
||||
if "duplicate key" in error_str or "unique constraint" in error_str or "nonetype" in error_str:
|
||||
db_error_count += 1
|
||||
if db_error_count >= 2:
|
||||
logger.critical(f"Potential database corruption detected: {error_str}. The search service may need manual intervention. Stopping batch {batch_id} processing.")
|
||||
break
|
||||
|
||||
if retry_count < max_retries - 1:
|
||||
retry_count += 1
|
||||
wait_time = (2 ** retry_count) + (random.random() * 0.5)
|
||||
await asyncio.sleep(wait_time)
|
||||
else:
|
||||
if len(batch) > 1:
|
||||
mid = len(batch) // 2
|
||||
await self._process_single_batch(batch[:mid], f"{batch_id}-A")
|
||||
await self._process_single_batch(batch[mid:], f"{batch_id}-B")
|
||||
break
|
||||
|
||||
async def _process_single_batch(self, documents, batch_id):
|
||||
"""Process a single batch with maximum reliability"""
|
||||
max_retries = 3
|
||||
retry_count = 0
|
||||
logger.info(
|
||||
f"Multi-endpoint indexing completed in {elapsed:.2f}s: "
|
||||
f"{len(title_docs)} titles, {len(body_docs)} bodies, {len(author_docs_list)} authors, "
|
||||
f"{total_skipped} shouts skipped"
|
||||
)
|
||||
|
||||
while retry_count < max_retries:
|
||||
try:
|
||||
if not documents:
|
||||
return
|
||||
async def _index_endpoint(self, documents, endpoint, doc_type):
|
||||
"""Process and index documents to a specific endpoint"""
|
||||
if not documents:
|
||||
logger.info(f"No {doc_type} documents to index")
|
||||
return
|
||||
|
||||
logger.info(f"Indexing {len(documents)} {doc_type} documents")
|
||||
|
||||
# Categorize documents by size
|
||||
small_docs, medium_docs, large_docs = self._categorize_by_size(documents, doc_type)
|
||||
|
||||
# Process each category with appropriate batch sizes
|
||||
batch_sizes = {
|
||||
"small": min(MAX_BATCH_SIZE, 15),
|
||||
"medium": min(MAX_BATCH_SIZE, 10),
|
||||
"large": min(MAX_BATCH_SIZE, 3)
|
||||
}
|
||||
|
||||
for category, docs in [("small", small_docs), ("medium", medium_docs), ("large", large_docs)]:
|
||||
if docs:
|
||||
batch_size = batch_sizes[category]
|
||||
await self._process_batches(docs, batch_size, endpoint, f"{doc_type}-{category}")
|
||||
|
||||
def _categorize_by_size(self, documents, doc_type):
|
||||
"""Categorize documents by size for optimized batch processing"""
|
||||
small_docs = []
|
||||
medium_docs = []
|
||||
large_docs = []
|
||||
|
||||
for doc in documents:
|
||||
# Extract relevant text based on document type
|
||||
if doc_type == "title":
|
||||
text = doc.get("title", "")
|
||||
elif doc_type == "body":
|
||||
text = doc.get("body", "")
|
||||
else: # author
|
||||
# For authors, consider both name and bio length
|
||||
text = doc.get("name", "") + " " + doc.get("bio", "")
|
||||
|
||||
text_len = len(text)
|
||||
|
||||
if text_len > 5000:
|
||||
large_docs.append(doc)
|
||||
elif text_len > 2000:
|
||||
medium_docs.append(doc)
|
||||
else:
|
||||
small_docs.append(doc)
|
||||
|
||||
logger.info(f"{doc_type.capitalize()} documents categorized: {len(small_docs)} small, {len(medium_docs)} medium, {len(large_docs)} large")
|
||||
return small_docs, medium_docs, large_docs
|
||||
|
||||
async def _process_batches(self, documents, batch_size, endpoint, batch_prefix):
|
||||
"""Process document batches with retry logic"""
|
||||
for i in range(0, len(documents), batch_size):
|
||||
batch = documents[i:i+batch_size]
|
||||
batch_id = f"{batch_prefix}-{i//batch_size + 1}"
|
||||
|
||||
retry_count = 0
|
||||
max_retries = 3
|
||||
success = False
|
||||
|
||||
while not success and retry_count < max_retries:
|
||||
try:
|
||||
logger.info(f"Sending batch {batch_id} ({len(batch)} docs) to {endpoint}")
|
||||
response = await self.index_client.post(
|
||||
endpoint,
|
||||
json=batch,
|
||||
timeout=90.0
|
||||
)
|
||||
|
||||
if response.status_code == 422:
|
||||
error_detail = response.json()
|
||||
logger.error(f"Validation error from search service for batch {batch_id}: {self._truncate_error_detail(error_detail)}")
|
||||
break
|
||||
|
||||
response.raise_for_status()
|
||||
success = True
|
||||
logger.info(f"Successfully indexed batch {batch_id}")
|
||||
|
||||
except Exception as e:
|
||||
retry_count += 1
|
||||
if retry_count >= max_retries:
|
||||
if len(batch) > 1:
|
||||
mid = len(batch) // 2
|
||||
logger.warning(f"Splitting batch {batch_id} into smaller batches for retry")
|
||||
await self._process_batches(batch[:mid], batch_size // 2, endpoint, f"{batch_prefix}-{i//batch_size}-A")
|
||||
await self._process_batches(batch[mid:], batch_size // 2, endpoint, f"{batch_prefix}-{i//batch_size}-B")
|
||||
else:
|
||||
logger.error(f"Failed to index single document in batch {batch_id} after {max_retries} attempts: {str(e)}")
|
||||
break
|
||||
|
||||
response = await self.index_client.post(
|
||||
"/bulk-index",
|
||||
json=documents,
|
||||
timeout=90.0
|
||||
)
|
||||
response.raise_for_status()
|
||||
return # Success, exit the retry loop
|
||||
|
||||
except Exception as e:
|
||||
error_str = str(e).lower()
|
||||
retry_count += 1
|
||||
|
||||
if "dictionary changed size" in error_str or "transaction error" in error_str:
|
||||
wait_time = (2 ** retry_count) + (random.random() * 0.5)
|
||||
await asyncio.sleep(wait_time) # Wait for txtai to recover
|
||||
continue
|
||||
|
||||
if retry_count >= max_retries and len(documents) > 1:
|
||||
for i, doc in enumerate(documents):
|
||||
try:
|
||||
resp = await self.index_client.post("/index", json=doc, timeout=30.0)
|
||||
resp.raise_for_status()
|
||||
except Exception as e2:
|
||||
pass
|
||||
return # Exit after individual processing attempt
|
||||
logger.warning(f"Retrying batch {batch_id} in {wait_time:.1f}s... (attempt {retry_count+1}/{max_retries})")
|
||||
await asyncio.sleep(wait_time)
|
||||
|
||||
def _truncate_error_detail(self, error_detail):
|
||||
"""Truncate error details for logging"""
|
||||
|
@ -632,7 +728,7 @@ async def initialize_search_index(shouts_data):
|
|||
return
|
||||
|
||||
index_stats = info.get("index_stats", {})
|
||||
indexed_doc_count = index_stats.get("document_count", 0)
|
||||
indexed_doc_count = index_stats.get("total_count", 0)
|
||||
|
||||
index_status = await search_service.check_index_status()
|
||||
if index_status.get("status") == "inconsistent":
|
||||
|
|
Loading…
Reference in New Issue
Block a user