ai test.py, sqllite removed

This commit is contained in:
bniwredyc 2023-05-09 23:41:13 +02:00
parent e56b083b7f
commit cbb64af17f
7 changed files with 95 additions and 12 deletions

3
.gitignore vendored
View File

@ -58,8 +58,6 @@ coverage.xml
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
@ -141,7 +139,6 @@ migration/content/**/*.md
.obsidian
*.zip
*.sqlite3
*.rdb
.DS_Store
/dump

View File

@ -5,5 +5,5 @@ ADD nginx.conf.sigil ./
RUN /usr/local/bin/python -m pip install --upgrade pip
WORKDIR /usr/src/app
COPY requirements.txt ./
RUN set -ex && pip install -r requirements.txt
RUN pip install -r requirements.txt
COPY . .

75
ai/preprocess.py Normal file
View File

@ -0,0 +1,75 @@
import re
import nltk
from bs4 import BeautifulSoup
from nltk.corpus import stopwords
from pymystem3 import Mystem
from string import punctuation
from transformers import BertTokenizer
nltk.download("stopwords")
def get_clear_text(text):
soup = BeautifulSoup(text, 'html.parser')
# extract the plain text from the HTML document without tags
clear_text = ''
for tag in soup.find_all():
clear_text += tag.string or ''
clear_text = re.sub(pattern='[\u202F\u00A0\n]+', repl=' ', string=clear_text)
# only words
clear_text = re.sub(pattern='[^A-ZА-ЯЁ -]', repl='', string=clear_text, flags=re.IGNORECASE)
clear_text = re.sub(pattern='\s+', repl=' ', string=clear_text)
clear_text = clear_text.lower()
mystem = Mystem()
russian_stopwords = stopwords.words("russian")
tokens = mystem.lemmatize(clear_text)
tokens = [token for token in tokens if token not in russian_stopwords \
and token != " " \
and token.strip() not in punctuation]
clear_text = " ".join(tokens)
return clear_text
# if __name__ == '__main__':
#
# # initialize the tokenizer with the pre-trained BERT model and vocabulary
# tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
#
# # split each text into smaller segments of maximum length 512
# max_length = 512
# segmented_texts = []
# for text in [clear_text1, clear_text2]:
# segmented_text = []
# for i in range(0, len(text), max_length):
# segment = text[i:i+max_length]
# segmented_text.append(segment)
# segmented_texts.append(segmented_text)
#
# # tokenize each segment using the BERT tokenizer
# tokenized_texts = []
# for segmented_text in segmented_texts:
# tokenized_text = []
# for segment in segmented_text:
# segment_tokens = tokenizer.tokenize(segment)
# segment_tokens = ['[CLS]'] + segment_tokens + ['[SEP]']
# tokenized_text.append(segment_tokens)
# tokenized_texts.append(tokenized_text)
#
# input_ids = []
# for tokenized_text in tokenized_texts:
# input_id = []
# for segment_tokens in tokenized_text:
# segment_id = tokenizer.convert_tokens_to_ids(segment_tokens)
# input_id.append(segment_id)
# input_ids.append(input_id)
#
# print(input_ids)

View File

@ -7,12 +7,9 @@ from sqlalchemy.sql.schema import Table
from settings import DB_URL
if DB_URL.startswith("sqlite"):
engine = create_engine(DB_URL)
else:
engine = create_engine(
DB_URL, echo=False, pool_size=10, max_overflow=20
)
engine = create_engine(
DB_URL, echo=False, pool_size=10, max_overflow=20
)
T = TypeVar("T")

View File

@ -7,7 +7,7 @@ pyjwt>=2.6.0
starlette~=0.23.1
sqlalchemy>=1.4.41
graphql-core>=3.0.3
gql
gql~=3.4.0
uvicorn>=0.18.3
pydantic>=1.10.2
passlib~=1.7.4
@ -29,3 +29,6 @@ lxml
sentry-sdk>=1.14.0
# sse_starlette
graphql-ws
nltk~=3.8.1
pymystem3~=0.2.0
transformers~=4.28.1

View File

@ -4,7 +4,7 @@ PORT = 8080
DB_URL = (
environ.get("DATABASE_URL") or environ.get("DB_URL") or
"postgresql://postgres@localhost:5432/discoursio" or "sqlite:///db.sqlite3"
"postgresql://postgres@localhost:5432/discoursio"
)
JWT_ALGORITHM = "HS256"
JWT_SECRET_KEY = environ.get("JWT_SECRET_KEY") or "8f1bd7696ffb482d8486dfbc6e7d16dd-secret-key"

11
test.py Normal file
View File

@ -0,0 +1,11 @@
from sqlalchemy import select
from ai.preprocess import get_clear_text
from base.orm import local_session
from orm import Shout
if __name__ == "__main__":
with local_session() as session:
q = select(Shout)
for [shout] in session.execute(q):
clear_shout_body = get_clear_text(shout.body)
print(clear_shout_body)