style(search.py): with indexing message
All checks were successful
Deploy on push / deploy (push) Successful in 42s

This commit is contained in:
Stepan Vladovskiy 2025-04-24 18:45:00 -03:00
parent 3062a2b7de
commit e7facf8d87

View File

@ -15,16 +15,24 @@ logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("httpcore").setLevel(logging.WARNING)
# Configuration for search service
SEARCH_ENABLED = bool(os.environ.get("SEARCH_ENABLED", "true").lower() in ["true", "1", "yes"])
SEARCH_ENABLED = bool(
os.environ.get("SEARCH_ENABLED", "true").lower() in ["true", "1", "yes"]
)
TXTAI_SERVICE_URL = os.environ.get("TXTAI_SERVICE_URL", "none")
MAX_BATCH_SIZE = int(os.environ.get("SEARCH_MAX_BATCH_SIZE", "25"))
# Search cache configuration
SEARCH_CACHE_ENABLED = bool(os.environ.get("SEARCH_CACHE_ENABLED", "true").lower() in ["true", "1", "yes"])
SEARCH_CACHE_TTL_SECONDS = int(os.environ.get("SEARCH_CACHE_TTL_SECONDS", "900")) # Default: 15 minutes
SEARCH_CACHE_ENABLED = bool(
os.environ.get("SEARCH_CACHE_ENABLED", "true").lower() in ["true", "1", "yes"]
)
SEARCH_CACHE_TTL_SECONDS = int(
os.environ.get("SEARCH_CACHE_TTL_SECONDS", "900")
) # Default: 15 minutes
SEARCH_MIN_SCORE = float(os.environ.get("SEARCH_MIN_SCORE", "0.1"))
SEARCH_PREFETCH_SIZE = int(os.environ.get("SEARCH_PREFETCH_SIZE", "200"))
SEARCH_USE_REDIS = bool(os.environ.get("SEARCH_USE_REDIS", "true").lower() in ["true", "1", "yes"])
SEARCH_USE_REDIS = bool(
os.environ.get("SEARCH_USE_REDIS", "true").lower() in ["true", "1", "yes"]
)
search_offset = 0
@ -32,11 +40,13 @@ search_offset = 0
if SEARCH_USE_REDIS:
try:
from services.redis import redis
logger.info("Redis client imported for search caching")
except ImportError:
logger.warning("Redis client import failed, falling back to memory cache")
SEARCH_USE_REDIS = False
class SearchCache:
"""Cache for search results to enable efficient pagination"""
@ -57,9 +67,11 @@ class SearchCache:
await redis.set(
f"{self._redis_prefix}{normalized_query}",
serialized_results,
ex=self.ttl
ex=self.ttl,
)
logger.info(
f"Stored {len(results)} search results for query '{query}' in Redis"
)
logger.info(f"Stored {len(results)} search results for query '{query}' in Redis")
return True
except Exception as e:
logger.error(f"Error storing search results in Redis: {e}")
@ -72,7 +84,9 @@ class SearchCache:
# Store results and update timestamp
self.cache[normalized_query] = results
self.last_accessed[normalized_query] = time.time()
logger.info(f"Cached {len(results)} search results for query '{query}' in memory")
logger.info(
f"Cached {len(results)} search results for query '{query}' in memory"
)
return True
async def get(self, query, limit=10, offset=0):
@ -104,10 +118,14 @@ class SearchCache:
# Return paginated subset
end_idx = min(offset + limit, len(all_results))
if offset >= len(all_results):
logger.warning(f"Requested offset {offset} exceeds result count {len(all_results)}")
logger.warning(
f"Requested offset {offset} exceeds result count {len(all_results)}"
)
return []
logger.info(f"Cache hit for '{query}': serving {offset}:{end_idx} of {len(all_results)} results")
logger.info(
f"Cache hit for '{query}': serving {offset}:{end_idx} of {len(all_results)} results"
)
return all_results[offset:end_idx]
async def has_query(self, query):
@ -158,7 +176,8 @@ class SearchCache:
now = time.time()
# First remove expired entries
expired_keys = [
key for key, last_access in self.last_accessed.items()
key
for key, last_access in self.last_accessed.items()
if now - last_access > self.ttl
]
@ -183,6 +202,7 @@ class SearchCache:
del self.last_accessed[key]
logger.info(f"Removed {remove_count} oldest search cache entries")
class SearchService:
def __init__(self):
logger.info(f"Initializing search service with URL: {TXTAI_SERVICE_URL}")
@ -198,8 +218,12 @@ class SearchService:
if SEARCH_CACHE_ENABLED:
cache_location = "Redis" if SEARCH_USE_REDIS else "Memory"
logger.info(f"Search caching enabled using {cache_location} cache with TTL={SEARCH_CACHE_TTL_SECONDS}s")
logger.info(f"Minimum score filter: {SEARCH_MIN_SCORE}, prefetch size: {SEARCH_PREFETCH_SIZE}")
logger.info(
f"Search caching enabled using {cache_location} cache with TTL={SEARCH_CACHE_TTL_SECONDS}s"
)
logger.info(
f"Minimum score filter: {SEARCH_MIN_SCORE}, prefetch size: {SEARCH_PREFETCH_SIZE}"
)
async def info(self):
"""Return information about search service"""
@ -219,7 +243,6 @@ class SearchService:
"""Check if service is available"""
return self.available
async def verify_docs(self, doc_ids):
"""Verify which documents exist in the search index across all content types"""
if not self.available:
@ -230,7 +253,7 @@ class SearchService:
response = await self.client.post(
"/verify-docs",
json={"doc_ids": doc_ids},
timeout=60.0 # Longer timeout for potentially large ID lists
timeout=60.0, # Longer timeout for potentially large ID lists
)
response.raise_for_status()
result = response.json()
@ -248,8 +271,12 @@ class SearchService:
titles_missing_count = len(titles_missing)
total_missing_count = len(all_missing)
logger.info(f"Document verification complete: {bodies_missing_count} bodies missing, {titles_missing_count} titles missing")
logger.info(f"Total unique missing documents: {total_missing_count} out of {len(doc_ids)} total")
logger.info(
f"Document verification complete: {bodies_missing_count} bodies missing, {titles_missing_count} titles missing"
)
logger.info(
f"Total unique missing documents: {total_missing_count} out of {len(doc_ids)} total"
)
# Return in a backwards-compatible format plus the detailed breakdown
return {
@ -258,14 +285,13 @@ class SearchService:
"bodies_missing": list(bodies_missing),
"titles_missing": list(titles_missing),
"bodies_missing_count": bodies_missing_count,
"titles_missing_count": titles_missing_count
}
"titles_missing_count": titles_missing_count,
},
}
except Exception as e:
logger.error(f"Document verification error: {e}")
return {"status": "error", "message": str(e)}
def index(self, shout):
"""Index a single document"""
if not self.available:
@ -284,40 +310,37 @@ class SearchService:
indexing_tasks = []
# 1. Index title if available
if hasattr(shout, 'title') and shout.title and isinstance(shout.title, str):
title_doc = {
"id": str(shout.id),
"title": shout.title.strip()
}
if hasattr(shout, "title") and shout.title and isinstance(shout.title, str):
title_doc = {"id": str(shout.id), "title": shout.title.strip()}
indexing_tasks.append(
self.index_client.post("/index-title", json=title_doc)
)
# 2. Index body content (subtitle, lead, body)
body_text_parts = []
for field_name in ['subtitle', 'lead', 'body']:
for field_name in ["subtitle", "lead", "body"]:
field_value = getattr(shout, field_name, None)
if field_value and isinstance(field_value, str) and field_value.strip():
body_text_parts.append(field_value.strip())
# Process media content if available
media = getattr(shout, 'media', None)
media = getattr(shout, "media", None)
if media:
if isinstance(media, str):
try:
media_json = json.loads(media)
if isinstance(media_json, dict):
if 'title' in media_json:
body_text_parts.append(media_json['title'])
if 'body' in media_json:
body_text_parts.append(media_json['body'])
if "title" in media_json:
body_text_parts.append(media_json["title"])
if "body" in media_json:
body_text_parts.append(media_json["body"])
except json.JSONDecodeError:
body_text_parts.append(media)
elif isinstance(media, dict):
if 'title' in media:
body_text_parts.append(media['title'])
if 'body' in media:
body_text_parts.append(media['body'])
if "title" in media:
body_text_parts.append(media["title"])
if "body" in media:
body_text_parts.append(media["body"])
if body_text_parts:
body_text = " ".join(body_text_parts)
@ -326,57 +349,58 @@ class SearchService:
if len(body_text) > MAX_TEXT_LENGTH:
body_text = body_text[:MAX_TEXT_LENGTH]
body_doc = {
"id": str(shout.id),
"body": body_text
}
body_doc = {"id": str(shout.id), "body": body_text}
indexing_tasks.append(
self.index_client.post("/index-body", json=body_doc)
)
# 3. Index authors
authors = getattr(shout, 'authors', [])
authors = getattr(shout, "authors", [])
for author in authors:
author_id = str(getattr(author, 'id', 0))
if not author_id or author_id == '0':
author_id = str(getattr(author, "id", 0))
if not author_id or author_id == "0":
continue
name = getattr(author, 'name', '')
name = getattr(author, "name", "")
# Combine bio and about fields
bio_parts = []
bio = getattr(author, 'bio', '')
bio = getattr(author, "bio", "")
if bio and isinstance(bio, str):
bio_parts.append(bio.strip())
about = getattr(author, 'about', '')
about = getattr(author, "about", "")
if about and isinstance(about, str):
bio_parts.append(about.strip())
combined_bio = " ".join(bio_parts)
if name:
author_doc = {
"id": author_id,
"name": name,
"bio": combined_bio
}
author_doc = {"id": author_id, "name": name, "bio": combined_bio}
indexing_tasks.append(
self.index_client.post("/index-author", json=author_doc)
)
# Run all indexing tasks in parallel
if indexing_tasks:
responses = await asyncio.gather(*indexing_tasks, return_exceptions=True)
responses = await asyncio.gather(
*indexing_tasks, return_exceptions=True
)
# Check for errors in responses
for i, response in enumerate(responses):
if isinstance(response, Exception):
logger.error(f"Error in indexing task {i}: {response}")
elif hasattr(response, 'status_code') and response.status_code >= 400:
logger.error(f"Error response in indexing task {i}: {response.status_code}, {await response.text()}")
elif (
hasattr(response, "status_code") and response.status_code >= 400
):
logger.error(
f"Error response in indexing task {i}: {response.status_code}, {await response.text()}"
)
logger.info(f"Document {shout.id} indexed across {len(indexing_tasks)} endpoints")
logger.info(
f"Document {shout.id} indexed across {len(indexing_tasks)} endpoints"
)
else:
logger.warning(f"No content to index for shout {shout.id}")
@ -386,7 +410,9 @@ class SearchService:
async def bulk_index(self, shouts):
"""Index multiple documents across three separate endpoints"""
if not self.available or not shouts:
logger.warning(f"Bulk indexing skipped: available={self.available}, shouts_count={len(shouts) if shouts else 0}")
logger.warning(
f"Bulk indexing skipped: available={self.available}, shouts_count={len(shouts) if shouts else 0}"
)
return
start_time = time.time()
@ -402,37 +428,44 @@ class SearchService:
for shout in shouts:
try:
# 1. Process title documents
if hasattr(shout, 'title') and shout.title and isinstance(shout.title, str):
title_docs.append({
"id": str(shout.id),
"title": shout.title.strip()
})
if (
hasattr(shout, "title")
and shout.title
and isinstance(shout.title, str)
):
title_docs.append(
{"id": str(shout.id), "title": shout.title.strip()}
)
# 2. Process body documents (subtitle, lead, body)
body_text_parts = []
for field_name in ['subtitle', 'lead', 'body']:
for field_name in ["subtitle", "lead", "body"]:
field_value = getattr(shout, field_name, None)
if field_value and isinstance(field_value, str) and field_value.strip():
if (
field_value
and isinstance(field_value, str)
and field_value.strip()
):
body_text_parts.append(field_value.strip())
# Process media content if available
media = getattr(shout, 'media', None)
media = getattr(shout, "media", None)
if media:
if isinstance(media, str):
try:
media_json = json.loads(media)
if isinstance(media_json, dict):
if 'title' in media_json:
body_text_parts.append(media_json['title'])
if 'body' in media_json:
body_text_parts.append(media_json['body'])
if "title" in media_json:
body_text_parts.append(media_json["title"])
if "body" in media_json:
body_text_parts.append(media_json["body"])
except json.JSONDecodeError:
body_text_parts.append(media)
elif isinstance(media, dict):
if 'title' in media:
body_text_parts.append(media['title'])
if 'body' in media:
body_text_parts.append(media['body'])
if "title" in media:
body_text_parts.append(media["title"])
if "body" in media:
body_text_parts.append(media["body"])
# Only add body document if we have body text
if body_text_parts:
@ -442,31 +475,28 @@ class SearchService:
if len(body_text) > MAX_TEXT_LENGTH:
body_text = body_text[:MAX_TEXT_LENGTH]
body_docs.append({
"id": str(shout.id),
"body": body_text
})
body_docs.append({"id": str(shout.id), "body": body_text})
# 3. Process authors if available
authors = getattr(shout, 'authors', [])
authors = getattr(shout, "authors", [])
for author in authors:
author_id = str(getattr(author, 'id', 0))
if not author_id or author_id == '0':
author_id = str(getattr(author, "id", 0))
if not author_id or author_id == "0":
continue
# Skip if we've already processed this author
if author_id in author_docs:
continue
name = getattr(author, 'name', '')
name = getattr(author, "name", "")
# Combine bio and about fields
bio_parts = []
bio = getattr(author, 'bio', '')
bio = getattr(author, "bio", "")
if bio and isinstance(bio, str):
bio_parts.append(bio.strip())
about = getattr(author, 'about', '')
about = getattr(author, "about", "")
if about and isinstance(about, str):
bio_parts.append(about.strip())
@ -477,21 +507,26 @@ class SearchService:
author_docs[author_id] = {
"id": author_id,
"name": name,
"bio": combined_bio
"bio": combined_bio,
}
except Exception as e:
logger.error(f"Error processing shout {getattr(shout, 'id', 'unknown')} for indexing: {e}")
logger.error(
f"Error processing shout {getattr(shout, 'id', 'unknown')} for indexing: {e}"
)
total_skipped += 1
# Convert author dict to list
author_docs_list = list(author_docs.values())
# Log indexing started message
logger.info("indexing started...")
# Process each endpoint in parallel
indexing_tasks = [
self._index_endpoint(title_docs, "/bulk-index-titles", "title"),
self._index_endpoint(body_docs, "/bulk-index-bodies", "body"),
self._index_endpoint(author_docs_list, "/bulk-index-authors", "author")
self._index_endpoint(author_docs_list, "/bulk-index-authors", "author"),
]
await asyncio.gather(*indexing_tasks)
@ -512,19 +547,27 @@ class SearchService:
logger.info(f"Indexing {len(documents)} {doc_type} documents")
# Categorize documents by size
small_docs, medium_docs, large_docs = self._categorize_by_size(documents, doc_type)
small_docs, medium_docs, large_docs = self._categorize_by_size(
documents, doc_type
)
# Process each category with appropriate batch sizes
batch_sizes = {
"small": min(MAX_BATCH_SIZE, 15),
"medium": min(MAX_BATCH_SIZE, 10),
"large": min(MAX_BATCH_SIZE, 3)
"large": min(MAX_BATCH_SIZE, 3),
}
for category, docs in [("small", small_docs), ("medium", medium_docs), ("large", large_docs)]:
for category, docs in [
("small", small_docs),
("medium", medium_docs),
("large", large_docs),
]:
if docs:
batch_size = batch_sizes[category]
await self._process_batches(docs, batch_size, endpoint, f"{doc_type}-{category}")
await self._process_batches(
docs, batch_size, endpoint, f"{doc_type}-{category}"
)
def _categorize_by_size(self, documents, doc_type):
"""Categorize documents by size for optimized batch processing"""
@ -551,13 +594,15 @@ class SearchService:
else:
small_docs.append(doc)
logger.info(f"{doc_type.capitalize()} documents categorized: {len(small_docs)} small, {len(medium_docs)} medium, {len(large_docs)} large")
logger.info(
f"{doc_type.capitalize()} documents categorized: {len(small_docs)} small, {len(medium_docs)} medium, {len(large_docs)} large"
)
return small_docs, medium_docs, large_docs
async def _process_batches(self, documents, batch_size, endpoint, batch_prefix):
"""Process document batches with retry logic"""
for i in range(0, len(documents), batch_size):
batch = documents[i:i+batch_size]
batch = documents[i : i + batch_size]
batch_id = f"{batch_prefix}-{i//batch_size + 1}"
retry_count = 0
@ -567,14 +612,14 @@ class SearchService:
while not success and retry_count < max_retries:
try:
response = await self.index_client.post(
endpoint,
json=batch,
timeout=90.0
endpoint, json=batch, timeout=90.0
)
if response.status_code == 422:
error_detail = response.json()
logger.error(f"Validation error from search service for batch {batch_id}: {self._truncate_error_detail(error_detail)}")
logger.error(
f"Validation error from search service for batch {batch_id}: {self._truncate_error_detail(error_detail)}"
)
break
response.raise_for_status()
@ -585,30 +630,64 @@ class SearchService:
if retry_count >= max_retries:
if len(batch) > 1:
mid = len(batch) // 2
await self._process_batches(batch[:mid], batch_size // 2, endpoint, f"{batch_prefix}-{i//batch_size}-A")
await self._process_batches(batch[mid:], batch_size // 2, endpoint, f"{batch_prefix}-{i//batch_size}-B")
await self._process_batches(
batch[:mid],
batch_size // 2,
endpoint,
f"{batch_prefix}-{i//batch_size}-A",
)
await self._process_batches(
batch[mid:],
batch_size // 2,
endpoint,
f"{batch_prefix}-{i//batch_size}-B",
)
else:
logger.error(f"Failed to index single document in batch {batch_id} after {max_retries} attempts: {str(e)}")
logger.error(
f"Failed to index single document in batch {batch_id} after {max_retries} attempts: {str(e)}"
)
break
wait_time = (2 ** retry_count) + (random.random() * 0.5)
wait_time = (2**retry_count) + (random.random() * 0.5)
await asyncio.sleep(wait_time)
def _truncate_error_detail(self, error_detail):
"""Truncate error details for logging"""
truncated_detail = error_detail.copy() if isinstance(error_detail, dict) else error_detail
truncated_detail = (
error_detail.copy() if isinstance(error_detail, dict) else error_detail
)
if isinstance(truncated_detail, dict) and 'detail' in truncated_detail and isinstance(truncated_detail['detail'], list):
for i, item in enumerate(truncated_detail['detail']):
if isinstance(item, dict) and 'input' in item:
if isinstance(item['input'], dict) and any(k in item['input'] for k in ['documents', 'text']):
if 'documents' in item['input'] and isinstance(item['input']['documents'], list):
for j, doc in enumerate(item['input']['documents']):
if 'text' in doc and isinstance(doc['text'], str) and len(doc['text']) > 100:
item['input']['documents'][j]['text'] = f"{doc['text'][:100]}... [truncated, total {len(doc['text'])} chars]"
if (
isinstance(truncated_detail, dict)
and "detail" in truncated_detail
and isinstance(truncated_detail["detail"], list)
):
for i, item in enumerate(truncated_detail["detail"]):
if isinstance(item, dict) and "input" in item:
if isinstance(item["input"], dict) and any(
k in item["input"] for k in ["documents", "text"]
):
if "documents" in item["input"] and isinstance(
item["input"]["documents"], list
):
for j, doc in enumerate(item["input"]["documents"]):
if (
"text" in doc
and isinstance(doc["text"], str)
and len(doc["text"]) > 100
):
item["input"]["documents"][j][
"text"
] = f"{doc['text'][:100]}... [truncated, total {len(doc['text'])} chars]"
if 'text' in item['input'] and isinstance(item['input']['text'], str) and len(item['input']['text']) > 100:
item['input']['text'] = f"{item['input']['text'][:100]}... [truncated, total {len(item['input']['text'])} chars]"
if (
"text" in item["input"]
and isinstance(item["input"]["text"], str)
and len(item["input"]["text"]) > 100
):
item["input"][
"text"
] = f"{item['input']['text'][:100]}... [truncated, total {len(item['input']['text'])} chars]"
return truncated_detail
@ -644,7 +723,7 @@ class SearchService:
response = await self.client.post(
"/search-combined",
json={"text": text, "limit": search_limit, "offset": search_offset}
json={"text": text, "limit": search_limit, "offset": search_offset},
)
response.raise_for_status()
@ -663,7 +742,11 @@ class SearchService:
if SEARCH_MIN_SCORE > 0:
initial_count = len(formatted_results)
formatted_results = [r for r in formatted_results if r.get("score", 0) >= SEARCH_MIN_SCORE]
formatted_results = [
r
for r in formatted_results
if r.get("score", 0) >= SEARCH_MIN_SCORE
]
if SEARCH_CACHE_ENABLED:
await self.cache.store(text, formatted_results)
@ -689,10 +772,11 @@ class SearchService:
return await self.cache.get(cache_key, limit, offset)
try:
logger.info(f"Searching authors for: '{text}' (limit={limit}, offset={offset})")
logger.info(
f"Searching authors for: '{text}' (limit={limit}, offset={offset})"
)
response = await self.client.post(
"/search-author",
json={"text": text, "limit": limit + offset}
"/search-author", json={"text": text, "limit": limit + offset}
)
response.raise_for_status()
@ -701,14 +785,16 @@ class SearchService:
# Apply score filtering if needed
if SEARCH_MIN_SCORE > 0:
author_results = [r for r in author_results if r.get("score", 0) >= SEARCH_MIN_SCORE]
author_results = [
r for r in author_results if r.get("score", 0) >= SEARCH_MIN_SCORE
]
# Store in cache if enabled
if SEARCH_CACHE_ENABLED:
await self.cache.store(cache_key, author_results)
# Apply offset/limit
return author_results[offset:offset+limit]
return author_results[offset : offset + limit]
except Exception as e:
logger.error(f"Error searching authors for '{text}': {e}")
@ -725,7 +811,9 @@ class SearchService:
result = response.json()
if result.get("consistency", {}).get("status") != "ok":
null_count = result.get("consistency", {}).get("null_embeddings_count", 0)
null_count = result.get("consistency", {}).get(
"null_embeddings_count", 0
)
if null_count > 0:
logger.warning(f"Found {null_count} documents with NULL embeddings")
@ -734,23 +822,27 @@ class SearchService:
logger.error(f"Failed to check index status: {e}")
return {"status": "error", "message": str(e)}
# Create the search service singleton
search_service = SearchService()
# API-compatible function to perform a search
async def search_text(text: str, limit: int = 50, offset: int = 0):
payload = []
if search_service.available:
payload = await search_service.search(text, limit, offset)
return payload
async def search_author_text(text: str, limit: int = 10, offset: int = 0):
"""Search authors API helper function"""
if search_service.available:
return await search_service.search_authors(text, limit, offset)
return []
async def get_search_count(text: str):
"""Get count of title search results"""
if not search_service.available:
@ -764,6 +856,7 @@ async def get_search_count(text: str):
# If not found in cache, fetch from endpoint
return len(await search_text(text, SEARCH_PREFETCH_SIZE, 0))
async def get_author_search_count(text: str):
"""Get count of author search results"""
if not search_service.available:
@ -777,6 +870,7 @@ async def get_author_search_count(text: str):
# If not found in cache, fetch from endpoint
return len(await search_author_text(text, SEARCH_PREFETCH_SIZE, 0))
async def initialize_search_index(shouts_data):
"""Initialize search index with existing data during application startup"""
if not SEARCH_ENABLED:
@ -794,29 +888,39 @@ async def initialize_search_index(shouts_data):
index_status = await search_service.check_index_status()
if index_status.get("status") == "inconsistent":
problem_ids = index_status.get("consistency", {}).get("null_embeddings_sample", [])
problem_ids = index_status.get("consistency", {}).get(
"null_embeddings_sample", []
)
if problem_ids:
problem_docs = [shout for shout in shouts_data if str(shout.id) in problem_ids]
problem_docs = [
shout for shout in shouts_data if str(shout.id) in problem_ids
]
if problem_docs:
await search_service.bulk_index(problem_docs)
# Only consider shouts with body content for body verification
def has_body_content(shout):
for field in ['subtitle', 'lead', 'body']:
if getattr(shout, field, None) and isinstance(getattr(shout, field, None), str) and getattr(shout, field).strip():
for field in ["subtitle", "lead", "body"]:
if (
getattr(shout, field, None)
and isinstance(getattr(shout, field, None), str)
and getattr(shout, field).strip()
):
return True
media = getattr(shout, 'media', None)
media = getattr(shout, "media", None)
if media:
if isinstance(media, str):
try:
media_json = json.loads(media)
if isinstance(media_json, dict) and (media_json.get('title') or media_json.get('body')):
if isinstance(media_json, dict) and (
media_json.get("title") or media_json.get("body")
):
return True
except Exception:
return True
elif isinstance(media, dict):
if media.get('title') or media.get('body'):
if media.get("title") or media.get("body"):
return True
return False
@ -829,9 +933,13 @@ async def initialize_search_index(shouts_data):
if verification.get("status") == "error":
return
# Only reindex missing docs that actually have body content
missing_ids = [mid for mid in verification.get("missing", []) if mid in body_ids]
missing_ids = [
mid for mid in verification.get("missing", []) if mid in body_ids
]
if missing_ids:
missing_docs = [shout for shout in shouts_with_body if str(shout.id) in missing_ids]
missing_docs = [
shout for shout in shouts_with_body if str(shout.id) in missing_ids
]
await search_service.bulk_index(missing_docs)
else:
pass
@ -846,7 +954,7 @@ async def initialize_search_index(shouts_data):
for result in test_results:
result_id = result.get("id")
matching_shouts = [s for s in shouts_data if str(s.id) == result_id]
if matching_shouts and hasattr(matching_shouts[0], 'category'):
categories.add(getattr(matching_shouts[0], 'category', 'unknown'))
if matching_shouts and hasattr(matching_shouts[0], "category"):
categories.add(getattr(matching_shouts[0], "category", "unknown"))
except Exception as e:
pass