core/services/search.py
Stepan Vladovskiy a0db5707c4
All checks were successful
Deploy on push / deploy (push) Successful in 51s
feat: add cash for storing searchresalts and hold them for working pagination. Now we are have offset for use on frontend
2025-04-01 16:01:09 -03:00

798 lines
37 KiB
Python

import asyncio
import json
import logging
import os
import httpx
import time
from collections import defaultdict
from datetime import datetime, timedelta
# Set up proper logging
logger = logging.getLogger("search")
logger.setLevel(logging.INFO) # Change to INFO to see more details
# Configuration for search service
SEARCH_ENABLED = bool(os.environ.get("SEARCH_ENABLED", "true").lower() in ["true", "1", "yes"])
TXTAI_SERVICE_URL = os.environ.get("TXTAI_SERVICE_URL", "none")
MAX_BATCH_SIZE = int(os.environ.get("SEARCH_MAX_BATCH_SIZE", "25"))
# Search cache configuration
SEARCH_CACHE_ENABLED = bool(os.environ.get("SEARCH_CACHE_ENABLED", "true").lower() in ["true", "1", "yes"])
SEARCH_CACHE_TTL_SECONDS = int(os.environ.get("SEARCH_CACHE_TTL_SECONDS", "900")) # Default: 15 minutes
SEARCH_MIN_SCORE = float(os.environ.get("SEARCH_MIN_SCORE", "0.1"))
SEARCH_PREFETCH_SIZE = int(os.environ.get("SEARCH_PREFETCH_SIZE", "200"))
SEARCH_USE_REDIS = bool(os.environ.get("SEARCH_USE_REDIS", "true").lower() in ["true", "1", "yes"])
# Import Redis client if Redis caching is enabled
if SEARCH_USE_REDIS:
try:
from services.redis import redis
logger.info("Redis client imported for search caching")
except ImportError:
logger.warning("Redis client import failed, falling back to memory cache")
SEARCH_USE_REDIS = False
class SearchCache:
"""Cache for search results to enable efficient pagination"""
def __init__(self, ttl_seconds=SEARCH_CACHE_TTL_SECONDS, max_items=100):
self.cache = {} # Maps search query to list of results
self.last_accessed = {} # Maps search query to last access timestamp
self.ttl = ttl_seconds
self.max_items = max_items
self._redis_prefix = "search_cache:"
async def store(self, query, results):
"""Store search results for a query"""
normalized_query = self._normalize_query(query)
if SEARCH_USE_REDIS:
try:
serialized_results = json.dumps(results)
await redis.set(
f"{self._redis_prefix}{normalized_query}",
serialized_results,
ex=self.ttl
)
logger.info(f"Stored {len(results)} search results for query '{query}' in Redis")
return True
except Exception as e:
logger.error(f"Error storing search results in Redis: {e}")
# Fall back to memory cache if Redis fails
# First cleanup if needed for memory cache
if len(self.cache) >= self.max_items:
self._cleanup()
# Store results and update timestamp
self.cache[normalized_query] = results
self.last_accessed[normalized_query] = time.time()
logger.info(f"Cached {len(results)} search results for query '{query}' in memory")
return True
async def get(self, query, limit=10, offset=0):
"""Get paginated results for a query"""
normalized_query = self._normalize_query(query)
all_results = None
# Try to get from Redis first
if SEARCH_USE_REDIS:
try:
cached_data = await redis.get(f"{self._redis_prefix}{normalized_query}")
if cached_data:
all_results = json.loads(cached_data)
logger.info(f"Retrieved search results for '{query}' from Redis")
# Redis TTL is auto-extended when setting the key with expiry
except Exception as e:
logger.error(f"Error retrieving search results from Redis: {e}")
# Fall back to memory cache if not in Redis
if all_results is None and normalized_query in self.cache:
all_results = self.cache[normalized_query]
self.last_accessed[normalized_query] = time.time()
logger.info(f"Retrieved search results for '{query}' from memory cache")
# If not found in any cache
if all_results is None:
logger.debug(f"Cache miss for query '{query}'")
return None
# Return paginated subset
end_idx = min(offset + limit, len(all_results))
if offset >= len(all_results):
logger.warning(f"Requested offset {offset} exceeds result count {len(all_results)}")
return []
logger.info(f"Cache hit for '{query}': serving {offset}:{end_idx} of {len(all_results)} results")
return all_results[offset:end_idx]
async def has_query(self, query):
"""Check if query exists in cache"""
normalized_query = self._normalize_query(query)
# Check Redis first
if SEARCH_USE_REDIS:
try:
exists = await redis.get(f"{self._redis_prefix}{normalized_query}")
if exists:
return True
except Exception as e:
logger.error(f"Error checking Redis for query existence: {e}")
# Fall back to memory cache
return normalized_query in self.cache
async def get_total_count(self, query):
"""Get total count of results for a query"""
normalized_query = self._normalize_query(query)
# Check Redis first
if SEARCH_USE_REDIS:
try:
cached_data = await redis.get(f"{self._redis_prefix}{normalized_query}")
if cached_data:
all_results = json.loads(cached_data)
return len(all_results)
except Exception as e:
logger.error(f"Error getting result count from Redis: {e}")
# Fall back to memory cache
if normalized_query in self.cache:
return len(self.cache[normalized_query])
return 0
def _normalize_query(self, query):
"""Normalize query string for cache key"""
if not query:
return ""
# Simple normalization - lowercase and strip whitespace
return query.lower().strip()
def _cleanup(self):
"""Remove oldest entries if memory cache is full"""
now = time.time()
# First remove expired entries
expired_keys = [
key for key, last_access in self.last_accessed.items()
if now - last_access > self.ttl
]
for key in expired_keys:
if key in self.cache:
del self.cache[key]
if key in self.last_accessed:
del self.last_accessed[key]
logger.info(f"Cleaned up {len(expired_keys)} expired search cache entries")
# If still above max size, remove oldest entries
if len(self.cache) >= self.max_items:
# Sort by last access time
sorted_items = sorted(self.last_accessed.items(), key=lambda x: x[1])
# Remove oldest 20%
remove_count = max(1, int(len(sorted_items) * 0.2))
for key, _ in sorted_items[:remove_count]:
if key in self.cache:
del self.cache[key]
if key in self.last_accessed:
del self.last_accessed[key]
logger.info(f"Removed {remove_count} oldest search cache entries")
class SearchService:
def __init__(self):
logger.info(f"Initializing search service with URL: {TXTAI_SERVICE_URL}")
self.available = SEARCH_ENABLED
# Use different timeout settings for indexing and search requests
self.client = httpx.AsyncClient(timeout=30.0, base_url=TXTAI_SERVICE_URL)
self.index_client = httpx.AsyncClient(timeout=120.0, base_url=TXTAI_SERVICE_URL)
# Initialize search cache
self.cache = SearchCache() if SEARCH_CACHE_ENABLED else None
if not self.available:
logger.info("Search disabled (SEARCH_ENABLED = False)")
if SEARCH_CACHE_ENABLED:
cache_location = "Redis" if SEARCH_USE_REDIS else "Memory"
logger.info(f"Search caching enabled using {cache_location} cache with TTL={SEARCH_CACHE_TTL_SECONDS}s")
logger.info(f"Minimum score filter: {SEARCH_MIN_SCORE}, prefetch size: {SEARCH_PREFETCH_SIZE}")
async def info(self):
"""Return information about search service"""
if not self.available:
return {"status": "disabled"}
try:
response = await self.client.get("/info")
response.raise_for_status()
result = response.json()
logger.info(f"Search service info: {result}")
return result
except Exception as e:
logger.error(f"Failed to get search info: {e}")
return {"status": "error", "message": str(e)}
def is_ready(self):
"""Check if service is available"""
return self.available
async def verify_docs(self, doc_ids):
"""Verify which documents exist in the search index"""
if not self.available:
return {"status": "disabled"}
try:
logger.info(f"Verifying {len(doc_ids)} documents in search index")
response = await self.client.post(
"/verify-docs",
json={"doc_ids": doc_ids},
timeout=60.0 # Longer timeout for potentially large ID lists
)
response.raise_for_status()
result = response.json()
# Log summary of verification results
missing_count = len(result.get("missing", []))
logger.info(f"Document verification complete: {missing_count} missing out of {len(doc_ids)} total")
return result
except Exception as e:
logger.error(f"Document verification error: {e}")
return {"status": "error", "message": str(e)}
def index(self, shout):
"""Index a single document"""
if not self.available:
return
logger.info(f"Indexing post {shout.id}")
# Start in background to not block
asyncio.create_task(self.perform_index(shout))
async def perform_index(self, shout):
"""Actually perform the indexing operation"""
if not self.available:
return
try:
# Combine all text fields
text = " ".join(filter(None, [
shout.title or "",
shout.subtitle or "",
shout.lead or "",
shout.body or "",
shout.media or ""
]))
if not text.strip():
logger.warning(f"No text content to index for shout {shout.id}")
return
logger.info(f"Indexing document: ID={shout.id}, Text length={len(text)}")
# Send to txtai service
response = await self.client.post(
"/index",
json={"id": str(shout.id), "text": text}
)
response.raise_for_status()
result = response.json()
logger.info(f"Post {shout.id} successfully indexed: {result}")
except Exception as e:
logger.error(f"Indexing error for shout {shout.id}: {e}")
async def bulk_index(self, shouts):
"""Index multiple documents at once with adaptive batch sizing"""
if not self.available or not shouts:
logger.warning(f"Bulk indexing skipped: available={self.available}, shouts_count={len(shouts) if shouts else 0}")
return
start_time = time.time()
logger.info(f"Starting bulk indexing of {len(shouts)} documents")
MAX_TEXT_LENGTH = 4000 # Maximum text length to send in a single request
max_batch_size = MAX_BATCH_SIZE
total_indexed = 0
total_skipped = 0
total_truncated = 0
total_retries = 0
# Group documents by size to process smaller documents in larger batches
small_docs = []
medium_docs = []
large_docs = []
# First pass: prepare all documents and categorize by size
for shout in shouts:
try:
text_fields = []
for field_name in ['title', 'subtitle', 'lead', 'body']:
field_value = getattr(shout, field_name, None)
if field_value and isinstance(field_value, str) and field_value.strip():
text_fields.append(field_value.strip())
# Media field processing remains the same
media = getattr(shout, 'media', None)
if media:
# Your existing media processing logic
if isinstance(media, str):
try:
media_json = json.loads(media)
if isinstance(media_json, dict):
if 'title' in media_json:
text_fields.append(media_json['title'])
if 'body' in media_json:
text_fields.append(media_json['body'])
except json.JSONDecodeError:
text_fields.append(media)
elif isinstance(media, dict):
if 'title' in media:
text_fields.append(media['title'])
if 'body' in media:
text_fields.append(media['body'])
text = " ".join(text_fields)
if not text.strip():
logger.debug(f"Skipping shout {shout.id}: no text content")
total_skipped += 1
continue
# Truncate text if it exceeds the maximum length
original_length = len(text)
if original_length > MAX_TEXT_LENGTH:
text = text[:MAX_TEXT_LENGTH]
logger.info(f"Truncated document {shout.id} from {original_length} to {MAX_TEXT_LENGTH} chars")
total_truncated += 1
document = {
"id": str(shout.id),
"text": text
}
# Categorize by size
text_len = len(text)
if text_len > 5000:
large_docs.append(document)
elif text_len > 2000:
medium_docs.append(document)
else:
small_docs.append(document)
total_indexed += 1
except Exception as e:
logger.error(f"Error processing shout {getattr(shout, 'id', 'unknown')} for indexing: {e}")
total_skipped += 1
# Process each category with appropriate batch sizes
logger.info(f"Documents categorized: {len(small_docs)} small, {len(medium_docs)} medium, {len(large_docs)} large")
# Process small documents (larger batches)
if small_docs:
batch_size = min(max_batch_size, 15)
await self._process_document_batches(small_docs, batch_size, "small")
# Process medium documents (medium batches)
if medium_docs:
batch_size = min(max_batch_size, 10)
await self._process_document_batches(medium_docs, batch_size, "medium")
# Process large documents (small batches)
if large_docs:
batch_size = min(max_batch_size, 3)
await self._process_document_batches(large_docs, batch_size, "large")
elapsed = time.time() - start_time
logger.info(f"Bulk indexing completed in {elapsed:.2f}s: {total_indexed} indexed, {total_skipped} skipped, {total_truncated} truncated, {total_retries} retries")
async def _process_document_batches(self, documents, batch_size, size_category):
"""Process document batches with retry logic"""
# Check for possible database corruption before starting
db_error_count = 0
for i in range(0, len(documents), batch_size):
batch = documents[i:i+batch_size]
batch_id = f"{size_category}-{i//batch_size + 1}"
logger.info(f"Processing {size_category} batch {batch_id} of {len(batch)} documents")
retry_count = 0
max_retries = 3
success = False
# Process with retries
while not success and retry_count < max_retries:
try:
if batch:
sample = batch[0]
logger.info(f"Sample document in batch {batch_id}: id={sample['id']}, text_length={len(sample['text'])}")
logger.info(f"Sending batch {batch_id} of {len(batch)} documents to search service (attempt {retry_count+1})")
response = await self.index_client.post(
"/bulk-index",
json=batch,
timeout=120.0 # Explicit longer timeout for large batches
)
# Handle 422 validation errors - these won't be fixed by retrying
if response.status_code == 422:
error_detail = response.json()
truncated_error = self._truncate_error_detail(error_detail)
logger.error(f"Validation error from search service for batch {batch_id}: {truncated_error}")
break
# Handle 500 server errors - these might be fixed by retrying with smaller batches
elif response.status_code == 500:
db_error_count += 1
# If we've seen multiple 500s, log a critical error
if db_error_count >= 3:
logger.critical(f"Multiple server errors detected (500). The search service may need manual intervention. Stopping batch {batch_id} processing.")
break
# Try again with exponential backoff
if retry_count < max_retries - 1:
retry_count += 1
wait_time = (2 ** retry_count) + (random.random() * 0.5) # Exponential backoff with jitter
logger.warning(f"Server error for batch {batch_id}, retrying in {wait_time:.1f}s (attempt {retry_count+1}/{max_retries})")
await asyncio.sleep(wait_time)
continue
# Final retry, split the batch
elif len(batch) > 1:
logger.warning(f"Splitting batch {batch_id} after repeated failures")
mid = len(batch) // 2
await self._process_single_batch(batch[:mid], f"{batch_id}-A")
await self._process_single_batch(batch[mid:], f"{batch_id}-B")
break
else:
# Can't split a single document
logger.error(f"Failed to index document {batch[0]['id']} after {max_retries} attempts")
break
# Normal success case
response.raise_for_status()
result = response.json()
logger.info(f"Batch {batch_id} indexed successfully: {result}")
success = True
db_error_count = 0 # Reset error counter on success
except Exception as e:
# Check if it looks like a database corruption error
error_str = str(e).lower()
if "duplicate key" in error_str or "unique constraint" in error_str or "nonetype" in error_str:
db_error_count += 1
if db_error_count >= 2:
logger.critical(f"Potential database corruption detected: {error_str}. The search service may need manual intervention. Stopping batch {batch_id} processing.")
break
if retry_count < max_retries - 1:
retry_count += 1
wait_time = (2 ** retry_count) + (random.random() * 0.5)
logger.warning(f"Error for batch {batch_id}, retrying in {wait_time:.1f}s: {str(e)[:200]}")
await asyncio.sleep(wait_time)
else:
# Last resort - try to split the batch
if len(batch) > 1:
logger.warning(f"Splitting batch {batch_id} after exception: {str(e)[:200]}")
mid = len(batch) // 2
await self._process_single_batch(batch[:mid], f"{batch_id}-A")
await self._process_single_batch(batch[mid:], f"{batch_id}-B")
else:
logger.error(f"Failed to index document {batch[0]['id']} after {max_retries} attempts: {e}")
break
async def _process_single_batch(self, documents, batch_id):
"""Process a single batch with maximum reliability"""
max_retries = 3
retry_count = 0
while retry_count < max_retries:
try:
if not documents:
return
logger.info(f"Processing sub-batch {batch_id} with {len(documents)} documents")
response = await self.index_client.post(
"/bulk-index",
json=documents,
timeout=90.0
)
response.raise_for_status()
result = response.json()
logger.info(f"Sub-batch {batch_id} indexed successfully: {result}")
return # Success, exit the retry loop
except Exception as e:
error_str = str(e).lower()
retry_count += 1
# Check if it's a transient error that txtai might recover from internally
if "dictionary changed size" in error_str or "transaction error" in error_str:
wait_time = (2 ** retry_count) + (random.random() * 0.5)
logger.warning(f"Transient txtai error in sub-batch {batch_id}, waiting {wait_time:.1f}s for recovery: {str(e)[:200]}")
await asyncio.sleep(wait_time) # Wait for txtai to recover
continue # Try again
# For other errors or final retry failure
logger.error(f"Error indexing sub-batch {batch_id} (attempt {retry_count}/{max_retries}): {str(e)[:200]}")
# Only try one-by-one on the final retry
if retry_count >= max_retries and len(documents) > 1:
logger.info(f"Processing documents in sub-batch {batch_id} individually")
for i, doc in enumerate(documents):
try:
resp = await self.index_client.post("/index", json=doc, timeout=30.0)
resp.raise_for_status()
logger.info(f"Indexed document {doc['id']} individually")
except Exception as e2:
logger.error(f"Failed to index document {doc['id']} individually: {str(e2)[:100]}")
return # Exit after individual processing attempt
def _truncate_error_detail(self, error_detail):
"""Truncate error details for logging"""
truncated_detail = error_detail.copy() if isinstance(error_detail, dict) else error_detail
if isinstance(truncated_detail, dict) and 'detail' in truncated_detail and isinstance(truncated_detail['detail'], list):
for i, item in enumerate(truncated_detail['detail']):
if isinstance(item, dict) and 'input' in item:
if isinstance(item['input'], dict) and any(k in item['input'] for k in ['documents', 'text']):
# Check for documents list
if 'documents' in item['input'] and isinstance(item['input']['documents'], list):
for j, doc in enumerate(item['input']['documents']):
if 'text' in doc and isinstance(doc['text'], str) and len(doc['text']) > 100:
item['input']['documents'][j]['text'] = f"{doc['text'][:100]}... [truncated, total {len(doc['text'])} chars]"
# Check for direct text field
if 'text' in item['input'] and isinstance(item['input']['text'], str) and len(item['input']['text']) > 100:
item['input']['text'] = f"{item['input']['text'][:100]}... [truncated, total {len(item['input']['text'])} chars]"
return truncated_detail
async def search(self, text, limit, offset):
"""Search documents"""
if not self.available:
logger.warning("Search not available")
return []
if not isinstance(text, str) or not text.strip():
logger.warning(f"Invalid search text: {text}")
return []
logger.info(f"Searching for: '{text}' (limit={limit}, offset={offset})")
# Check if we can serve from cache
if SEARCH_CACHE_ENABLED:
has_cache = await self.cache.has_query(text)
if has_cache:
cached_results = await self.cache.get(text, limit, offset)
if cached_results is not None:
logger.info(f"Serving search results for '{text}' from cache (offset={offset}, limit={limit})")
return cached_results
# Not in cache or cache disabled, perform new search
try:
search_limit = limit
search_offset = offset
# If cache is enabled, prefetch more results to store in cache
if SEARCH_CACHE_ENABLED and offset == 0:
search_limit = SEARCH_PREFETCH_SIZE # Fetch more results to cache
search_offset = 0 # Always start from beginning for cache
logger.info(f"Sending search request: text='{text}', limit={search_limit}, offset={search_offset}")
response = await self.client.post(
"/search",
json={"text": text, "limit": search_limit, "offset": search_offset}
)
response.raise_for_status()
logger.info(f"Raw search response: {response.text}")
result = response.json()
logger.info(f"Parsed search response: {result}")
formatted_results = result.get("results", [])
# Filter out non-numeric IDs to prevent database errors
valid_results = []
for item in formatted_results:
doc_id = item.get("id")
if doc_id and doc_id.isdigit():
valid_results.append(item)
else:
logger.warning(f"Filtered out non-numeric document ID: {doc_id}")
if len(valid_results) != len(formatted_results):
logger.info(f"Filtered {len(formatted_results) - len(valid_results)} results with non-numeric IDs")
formatted_results = valid_results
# Filter out low-score results
if SEARCH_MIN_SCORE > 0:
initial_count = len(formatted_results)
formatted_results = [r for r in formatted_results if r.get("score", 0) >= SEARCH_MIN_SCORE]
if len(formatted_results) != initial_count:
logger.info(f"Filtered {initial_count - len(formatted_results)} results with score < {SEARCH_MIN_SCORE}")
logger.info(f"Search for '{text}' returned {len(formatted_results)} valid results")
if formatted_results:
logger.info(f"Sample result: {formatted_results[0]}")
else:
logger.warning(f"No results found for '{text}'")
# Store full results in cache if caching is enabled
if SEARCH_CACHE_ENABLED and offset == 0:
# Store normal sorted results
await self.cache.store(text, formatted_results)
# Return only the requested page
if limit < len(formatted_results):
page_results = formatted_results[:limit]
logger.info(f"Returning first page of {len(page_results)} results " +
f"(out of {len(formatted_results)} total)")
return page_results
return formatted_results
except Exception as e:
logger.error(f"Search error for '{text}': {e}", exc_info=True)
return []
async def check_index_status(self):
"""Get detailed statistics about the search index health"""
if not self.available:
return {"status": "disabled"}
try:
response = await self.client.get("/index-status")
response.raise_for_status()
result = response.json()
logger.info(f"Index status check: {result['status']}, {result['documents_count']} documents")
# Log warnings for any inconsistencies
if result.get("consistency", {}).get("status") != "ok":
null_count = result.get("consistency", {}).get("null_embeddings_count", 0)
if null_count > 0:
logger.warning(f"Found {null_count} documents with NULL embeddings")
return result
except Exception as e:
logger.error(f"Failed to check index status: {e}")
return {"status": "error", "message": str(e)}
# Create the search service singleton
search_service = SearchService()
# API-compatible function to perform a search
async def search_text(text: str, limit: int = 50, offset: int = 0):
payload = []
if search_service.available:
payload = await search_service.search(text, limit, offset)
return payload
async def get_search_count(text: str):
"""Get total count of results for a query without fetching all results"""
if search_service.available and SEARCH_CACHE_ENABLED:
if await search_service.cache.has_query(text):
return await search_service.cache.get_total_count(text)
# If not cached, we'll need to perform the full search once
results = await search_text(text, SEARCH_PREFETCH_SIZE, 0)
return len(results)
async def initialize_search_index(shouts_data):
"""Initialize search index with existing data during application startup"""
if not SEARCH_ENABLED:
logger.info("Search indexing skipped (SEARCH_ENABLED=False)")
return
if not shouts_data:
logger.warning("No shouts data provided for search indexing")
return
logger.info(f"Checking search index status for {len(shouts_data)} documents")
# Get the current index info
info = await search_service.info()
if info.get("status") in ["error", "unavailable", "disabled"]:
logger.error(f"Cannot initialize search index: {info}")
return
# Check if index has approximately right number of documents
index_stats = info.get("index_stats", {})
indexed_doc_count = index_stats.get("document_count", 0)
# Add a more detailed status check
index_status = await search_service.check_index_status()
if index_status.get("status") == "healthy":
logger.info("Index status check passed")
elif index_status.get("status") == "inconsistent":
logger.warning("Index status check found inconsistencies")
# Get documents with null embeddings
problem_ids = index_status.get("consistency", {}).get("null_embeddings_sample", [])
if problem_ids:
logger.info(f"Repairing {len(problem_ids)} documents with NULL embeddings")
problem_docs = [shout for shout in shouts_data if str(shout.id) in problem_ids]
if problem_docs:
await search_service.bulk_index(problem_docs)
# Log database document summary
db_ids = [str(shout.id) for shout in shouts_data]
logger.info(f"Database contains {len(shouts_data)} documents. Sample IDs: {', '.join(db_ids[:5])}...")
# Calculate summary by ID range to understand the coverage
try:
# Parse numeric IDs where possible to analyze coverage
numeric_ids = [int(sid) for sid in db_ids if sid.isdigit()]
if numeric_ids:
min_id = min(numeric_ids)
max_id = max(numeric_ids)
id_range = max_id - min_id + 1
coverage_pct = (len(numeric_ids) / id_range) * 100 if id_range > 0 else 0
logger.info(f"ID range analysis: min_id={min_id}, max_id={max_id}, range={id_range}, "
f"coverage={coverage_pct:.1f}% ({len(numeric_ids)}/{id_range})")
except Exception as e:
logger.warning(f"Could not analyze ID ranges: {e}")
# If counts are significantly different, do verification
if abs(indexed_doc_count - len(shouts_data)) > 10:
logger.info(f"Document count mismatch: {indexed_doc_count} in index vs {len(shouts_data)} in database. Verifying...")
# Get all document IDs from your database
doc_ids = [str(shout.id) for shout in shouts_data]
# Verify which ones are missing from the index
verification = await search_service.verify_docs(doc_ids)
if verification.get("status") == "error":
logger.error(f"Document verification failed: {verification.get('message')}")
return
# Index only missing documents
missing_ids = verification.get("missing", [])
if missing_ids:
logger.info(f"Found {len(missing_ids)} documents missing from index. Indexing them...")
logger.info(f"Sample missing IDs: {', '.join(missing_ids[:10])}...")
missing_docs = [shout for shout in shouts_data if str(shout.id) in missing_ids]
await search_service.bulk_index(missing_docs)
else:
logger.info("All documents are already indexed.")
else:
logger.info(f"Search index appears to be in sync ({indexed_doc_count} documents indexed).")
# Optional sample verification (can be slow with large document sets)
# Uncomment if you want to periodically check a random sample even when counts match
"""
sample_size = 10
if len(db_ids) > sample_size:
sample_ids = random.sample(db_ids, sample_size)
logger.info(f"Performing random sample verification on {sample_size} documents...")
verification = await search_service.verify_docs(sample_ids)
if verification.get("missing"):
missing_count = len(verification.get("missing", []))
logger.warning(f"Random verification found {missing_count}/{sample_size} missing docs "
f"despite count match. Consider full verification.")
else:
logger.info("Random document sample verification passed.")
"""
# Verify with test query
try:
test_query = "test"
logger.info(f"Verifying search index with query: '{test_query}'")
test_results = await search_text(test_query, 5)
if test_results:
logger.info(f"Search verification successful: found {len(test_results)} results")
# Log categories covered by search results
categories = set()
for result in test_results:
result_id = result.get("id")
matching_shouts = [s for s in shouts_data if str(s.id) == result_id]
if matching_shouts and hasattr(matching_shouts[0], 'category'):
categories.add(getattr(matching_shouts[0], 'category', 'unknown'))
if categories:
logger.info(f"Search results cover categories: {', '.join(categories)}")
else:
logger.warning("Search verification returned no results. Index may be empty or not working.")
except Exception as e:
logger.error(f"Error verifying search index: {e}")