less-norm
This commit is contained in:
@@ -48,40 +48,42 @@ async def messages_routing(msg, state):
|
||||
reply_to_msg_id = reply_msg.get("message_id")
|
||||
if not reply_to_msg_id and latest_toxic_message_id:
|
||||
reply_to_msg_id = int(latest_toxic_message_id)
|
||||
|
||||
# count toxicity
|
||||
if reply_to_msg_id:
|
||||
# count one message score
|
||||
one_score = await redis.get(f"toxic:{cid}:{uid}:{reply_to_msg_id}")
|
||||
reply_text = ""
|
||||
if one_score:
|
||||
logger.debug(one_score)
|
||||
reply_text += f"{int(one_score)}% токсичности\n"
|
||||
|
||||
# count average between all of messages
|
||||
toxic_pattern = f"toxic:{cid}:{uid}:*"
|
||||
toxic_score = await get_average_pattern(toxic_pattern)
|
||||
# count average between all of messages
|
||||
toxic_pattern = f"toxic:{cid}:{uid}:*"
|
||||
toxic_score = await get_average_pattern(toxic_pattern)
|
||||
|
||||
# current mesasage toxicity
|
||||
if reply_to_msg_id:
|
||||
one_score = await redis.get(f"toxic:{cid}:{uid}:{reply_to_msg_id}")
|
||||
reply_text = ""
|
||||
if one_score:
|
||||
logger.debug(one_score)
|
||||
reply_text += f"{int(one_score)}% токсичности\n"
|
||||
if toxic_score:
|
||||
emoji = (
|
||||
"😳"
|
||||
if toxic_score > 90
|
||||
else "😟"
|
||||
if toxic_score > 80
|
||||
else "😏"
|
||||
if toxic_score > 60
|
||||
else "🙂"
|
||||
if toxic_score > 20
|
||||
else "😇"
|
||||
)
|
||||
reply_text += (
|
||||
f"Средняя токсичность сообщений: {toxic_score}% {emoji}"
|
||||
)
|
||||
if reply_text:
|
||||
await telegram_api(
|
||||
"sendMessage",
|
||||
chat_id=cid,
|
||||
reply_to_message_id=reply_to_msg_id,
|
||||
text=reply_text,
|
||||
)
|
||||
if toxic_score:
|
||||
emoji = (
|
||||
"😳"
|
||||
if toxic_score > 90
|
||||
else "😟"
|
||||
if toxic_score > 80
|
||||
else "😏"
|
||||
if toxic_score > 60
|
||||
else "🙂"
|
||||
if toxic_score > 20
|
||||
else "😇"
|
||||
)
|
||||
reply_text += (
|
||||
f"Средняя токсичность сообщений: {toxic_score}% {emoji}"
|
||||
)
|
||||
if reply_text:
|
||||
await telegram_api(
|
||||
"sendMessage",
|
||||
chat_id=cid,
|
||||
reply_to_message_id=reply_to_msg_id,
|
||||
text=reply_text,
|
||||
)
|
||||
try:
|
||||
await telegram_api("deleteMessage", chat_id=cid, message_id=mid)
|
||||
except Exception:
|
||||
|
@@ -1,13 +1,7 @@
|
||||
import torch
|
||||
from transformers import ByT5Tokenizer, T5ForConditionalGeneration
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger("nlp.normalize")
|
||||
|
||||
# Use ByT5 for the ByT5 model
|
||||
tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")
|
||||
model = T5ForConditionalGeneration.from_pretrained("google/byt5-small")
|
||||
|
||||
|
||||
def is_russian_wording(text):
|
||||
"""
|
||||
@@ -22,24 +16,6 @@ def is_russian_wording(text):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def segment_text(text):
|
||||
"""
|
||||
Use a neural network model to segment text into words.
|
||||
"""
|
||||
# Encode the input text for the model as UTF-8 bytes
|
||||
inputs = tokenizer.encode("segment: " + text, return_tensors="pt")
|
||||
|
||||
# Generate predictions
|
||||
with torch.no_grad():
|
||||
outputs = model.generate(inputs)
|
||||
|
||||
# Decode the generated tokens back to text
|
||||
segmented_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
|
||||
return segmented_text
|
||||
|
||||
|
||||
def normalize(text):
|
||||
"""
|
||||
Normalize English text to resemble Russian characters.
|
||||
|
25
nlp/segment_text.py
Normal file
25
nlp/segment_text.py
Normal file
@@ -0,0 +1,25 @@
|
||||
import torch
|
||||
from transformers import ByT5Tokenizer, T5ForConditionalGeneration
|
||||
|
||||
# Use ByT5 for the ByT5 model
|
||||
tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")
|
||||
model = T5ForConditionalGeneration.from_pretrained("google/byt5-small")
|
||||
|
||||
|
||||
|
||||
|
||||
def segment_text(text):
|
||||
"""
|
||||
Use a neural network model to segment text into words.
|
||||
"""
|
||||
# Encode the input text for the model as UTF-8 bytes
|
||||
inputs = tokenizer.encode("segment: " + text, return_tensors="pt")
|
||||
|
||||
# Generate predictions
|
||||
with torch.no_grad():
|
||||
outputs = model.generate(inputs)
|
||||
|
||||
# Decode the generated tokens back to text
|
||||
segmented_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
|
||||
return segmented_text
|
@@ -2,5 +2,5 @@ redis[hiredis]
|
||||
aiohttp
|
||||
torch
|
||||
transformers
|
||||
protobuf
|
||||
sentencepiece
|
||||
# protobuf
|
||||
# sentencepiece
|
Reference in New Issue
Block a user